精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,在三棱锥DABC中,已知△BCD是正三角形,AB⊥平面BCDABBCaEBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

(1)
(2)要证明线面垂直,一般要通过线线垂直来证明,或者面面垂直的性质定理。
(3)当CFCN时,MNOF.∴CN

解析试题分析:解:(1)∵AB⊥平面BCD,∴ABBCABBD

∵△BCD是正三角形,且ABBCa,∴ADAC
GCD的中点,则CGAG

三棱锥DABC的表面积为
(2)取AC的中点H,∵ABBC,∴BHAC
AF=3FC,∴FCH的中点.
EBC的中点,∴EFBH.则EFAC
∵△BCD是正三角形,∴DEBC
AB⊥平面BCD,∴ABDE
ABBCB,∴DE⊥平面ABC.∴DEAC
DEEFE,∴AC⊥平面DEF
(3)存在这样的点N,当CN时,MN∥平面DEF
CM,设CMDEO,连OF.由条件知,O为△BCD的重心,COCM
∴当CFCN时,MNOF.∴CN
考点:空间点线面的位置关系
点评:解决该试题的关键是线面平行和线面垂直的运用,以及椎体体积的求解运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。

(Ⅰ)求证:     
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠ =,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,四边形为矩形,平面上的点,且平面.

(1)求证:
(2)求三棱锥的体积;
(3)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在四棱锥中,//平面.

(Ⅰ)设平面平面,求证://
(Ⅱ)求证:平面
(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图1,平面四边形关于直线对称,.把沿折起(如图2),使二面角的余弦值等于

对于图二,完成以下各小题:
(Ⅰ)求两点间的距离;
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案