如图,在
中,
为
边上的高,
,
,沿
将
翻折,使得
,得到几何体
。![]()
(1)求证:
;
(2)求
与平面
所成角的正切值。
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,四边形
为矩形,
平面
,
为
上的点,且
平面
.![]()
(1)求证:
;
(2)求三棱锥
的体积;
(3)设
在线段
上,且满足
,试在线段
上确定一点
,使得
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=
,E、F分别为线段PD和BC的中点.![]()
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
图1,平面四边形
关于直线
对称,
,
,
.把
沿
折起(如图2),使二面角
的余弦值等于
.![]()
对于图二,完成以下各小题:
(Ⅰ)求
两点间的距离;
(Ⅱ)证明:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)线段
上是否存在点
,使得
平面
?若存在,试确定点
的位置;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA
平面ABCD,
,BC=1,E为CD的中点,PC与平面ABCD成
角。![]()
(1)求证:平面EPB
平面PBA;(2)求二面角P-BD-A 的余弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com