精英家教网 > 高中数学 > 题目详情

已知f(α)=数学公式
(1)化简f(α);
(2)若cos(数学公式的值.

解:(1)已知f(α)==-cos2α…(6分)
(2)因为

…(6分)
分析:(1)直接利用诱导公式化简已知表达式,求出表达式的值即可.
(2)利用(1)求出,化简cos,通过代换求出结果即可.
点评:本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在(-1,1)上有定义,f(
1
2
)=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f(
x+y
1+xy

(1)证明:f(x)在(-1,1)上为奇函数;?
(2)对数列x1=
1
2
,xn+1=
2xn
1+xn2
,求f(xn);?
(3)求证
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
>-
2n+5
n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+2ax+1-a.
(1)若f(x)在[0,1]上的最大值是2,求实数a的值;
(2)设M={a∈R:f(x)在区间[-2,3]上的最小值为-1},试求M;
(3)是否存在实数a使f(x)在[-4,2]上的值域为[-12.,13]?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-1)2,g(x)=4(x-1),f(an)和g(an)满足:a1=2,且(an+1-an)g(an)+f(an)=0.
(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由.
(2)设bn=3f(an)-[g(an+1)]2,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州一模)已知f(x)=(x+1)(x2+2)(x3+3),则f'(x)的表达式中含x4项的系数是(  )

查看答案和解析>>

同步练习册答案