精英家教网 > 高中数学 > 题目详情
已知:a+b+c,b+c-a,c+a-b,a+b-c组成公比为q的等比数列,求证:q3+q2+q=1.
证明:设x=a+b+c,
则b+c-a=xq,c+a-b=xq2,a+b-c=xq3
∴xq+xq2+xq3=x(x≠0),
∴q3+q2+q=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x=2n-1,n∈z},B={y|y=2n+1,n∈z},C={s|s=2k±1,k∈z},D={t|t=4k±1,k∈z},则四者间的关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)已知集合A={x|x2-x-12≤0,x∈Z},从集合A中任选三个不同的元素a,b,c组成集合M,则能够满足a+b+c=0的集合M的概率为=
3
28
3
28

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是△ABC的三个内角,则在下列各结论中,不正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是(    )

A.c≥b>a                      B.a>c≥b

C.c>b>a                      D.a>c>b

查看答案和解析>>

同步练习册答案