精英家教网 > 高中数学 > 题目详情

在等差数列{an}中,已知a1+a3+a11=6,那么S9=


  1. A.
    2
  2. B.
    8;
  3. C.
    18
  4. D.
    36
C
分析:先根据等差数列的通项公式,利用a1+a3+a11=6求得a1+4d的值,进而代入等差数列的求和公式求得前9项的和.
解答:a1+a3+a11=3a1+12d=6,
∴a1+4d=2
∴S9==(a1+4d)×9=18
故选C
点评:本题主要考查了等差数列的前n项的和.考查了学生对等差数列基础知识的把握和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案