精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3-ax2+6bx在x=-1处有极大值7.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)求f(x)在x=1处的切线方程.
分析:(Ⅰ)欲求f (x)的解析式,只需得到含两个a,b的等式,根据函数f (x)在x=-1处有极大值,可知,函数在x=-1处导数等于0,根据极大值为7,可知,x=7时,函数值等于7,这样,就可求出a,b.
(Ⅱ)先对函数求导,再令导数大于0,解出x的范围,为函数的增区间,令导数小于0,解出x的范围,为函数的减区间.
(Ⅲ)先求f (x)在x=1处的导数,就是f (x)在x=1处的切线的斜率,再利用点斜式,求出切线方程.
解答:解:(Ⅰ)f'(x)=6x2-2ax+6b,
f′(-1)=0
f(-1)=7

6+2a+6b=0
-2-a-6b=7
a=3
b=-2
,经检验满足题意      
∴f(x)=2x3-3x2-12x.      
(Ⅱ)∵f'(x)=6x2-6x-12,令 6x2-6x-12<0,
令6x2-6x-12>0,x2-x-2<0,
x2-x-2>0,(x+1)(x-2)<0,
(x+1)(x-2)>0,(x+1)(x-2)<0,
∴x<-1或x>2.   (1分)∴-1<x<2      
∴f (x)在(-∞,-1)和(2,+∞)内为增函数,
f (x)在(-1,2)内为减函数.
(Ⅲ)∵f'(x)=6x2-6x-12
∴f'(1)=-12(1分)∵f(1)=-13  
∴切线方程为y+13=-12(x-1),即y=-12x-1
点评:本题主要考查利用导数求函数在某一点处的极值,求函数的单调区间,以及倒数的几何意义,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案