精英家教网 > 高中数学 > 题目详情

已知函数(其中)的最大值为2,最小正周期为.
(1)求函数的解析式;
(2)若函数图象上的两点的横坐标依次为为坐标原点,求的值.

(1). (2).

解析试题分析:(1)∵的最大值为2,且,∴.
的最小正周期为
,得.    ∴.
(2)解法1:∵
, ∴.
.   
.
解法2:∵
.∴.   
.
解法3: ∵

.  作轴, 轴,垂足分别为,
,.
,则.
.
考点:本题考查了三角函数的性质及正余弦定理
点评:三角函数的解析式的求解是高考的热点内容, 求解时要根据最值及周期等条件,另外求解夹角问题时,通常有几何和向量两种方法,要注意灵活运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小值和最小正周期;
(2)设的内角的对边分别为,且,若共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数部分图象如图所示,其图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为

(Ⅰ)求的解析式及的值;
(Ⅱ)在中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)设的最小值是,最大值是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 ,(,其中)的周期为,且图像上一个最低点为
(1)求的解析式;
(2)当时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当时,函数的最大值与最小值的和为,求的解析式;
(Ⅲ)将满足(Ⅱ)的函数的图像向右平移个单位,纵坐标不变横坐标变为原来的2
倍,再向下平移,得到函数,求图像与轴的正半轴、直线所围成图形的
面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)函数的最小正周期是多少?
(Ⅱ)函数的单调增区间是什么?
(Ⅲ)函数的图像可由函数的图像如何变换而得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处.

(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,其图象上相邻两个最高点之间的距离为.
(1)求函数的解析式.
(2)若,求的值.

查看答案和解析>>

同步练习册答案