精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
某学校要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.

(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;
(2)求恰有两个区域用红色鲜花的概率;
(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量的分布列及其数学期望.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(本小题共14分)
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为

(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;
(Ⅲ)求的分布列和数学期望。                                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某大学毕业生响应国家号召,到某村参加村委会主任应聘考核。考核依次分为笔试、面
试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,
三轮考核都通过才能被正式录用。设该大学毕业生通过三轮考核的概率分别为, 且各轮考核通过与否相互独立。
(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为ξ,求ξ的数学期望和方差。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、(本小题满分12分)
我校高一有A,B,C三科兴趣小组,用分层抽样方法从参加这三科的同学中,抽取若干人组成一个队,代表我校参加德州市组织的科技竞赛活动,有关数据见下表(单位:人)
科目
人数
抽取人数
A
18
x
B
36
2
C
54
y
(1)求x,y ;
(2)若从B、C两科抽取的人中选2人参加市队,求这二人都来自C科的概率.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、从某高校新生中随机抽取100名学生,测得身高情况(单位:)并根据身高评定其发育标准如右表所示:

(1)请在频率分布表中的①、②位置上填上相应的数据,估计该批新生中发育正常或较好的概率;
(2)按身高分层抽样,现已抽取20人准备参加世博会志愿者活动,其中有3名学生担任迎宾工作,记“这3名学生中身高低于170的人数”为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲乙两人进行相棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是(   )
A.0.6B.0.8C.0.2D.0.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,墙上挂有一边长为1的正方形木板,它的阴影部分
是由函数的图象围成的图形.
某人向此板投镖,假设每次都能击中木板,且击中木板上
每个点的可能性都一样,则他击中阴影部分的概率是
A.B.C.D.

查看答案和解析>>

同步练习册答案