精英家教网 > 高中数学 > 题目详情

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
 
(1)某广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)某厂商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

(1)x=15cm(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)计算的值;
(2)若关于的不等式:在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量与时间小时间的关系为.如果在前个小时消除了的污染物,试求:
(1)个小时后还剩百分之几的污染物?
(2)污染物减少所需要的时间.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知美国苹果公司生产某款iPhone手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone手机x万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万美元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,苹果公司在该款iPhone手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求函数y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使过此两点的直线平行于x轴;
(3)当a、b满足什么关系时,f(x)在区间上恒取正值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数x、y、z满足3x=4y=6z>1.
(1)求证:
(2)试比较3x、4y、6z的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数y=f(x)经过点.
(1)试求函数解析式;
(2)判断函数的奇偶性并写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.

①写出y关于r的函数表达式,并求该函数的定义域;
②求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

同步练习册答案