精英家教网 > 高中数学 > 题目详情
已知是抛物线的焦点,过且斜率为的直线交两点.设<,若,则λ的值为       
因为根据已知抛物线的 方程为,其焦点为(1,0)过焦点的斜率为的直线方程可知设出来,联立方程组,然后借助于向量的关系式和长度的关系,可知的值为,故答案为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

焦点在x轴上的椭圆的离心率为,则它的长半轴长为_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本题满分15分)已知点为一个动点,且直线的斜率之积为
(I)求动点的轨迹的方程;
(II)设,过点的直线两点,的面积记为S,若对满足条件的任意直线,不等式的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.
(1)求椭圆的方程
(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于两点,求时,直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为为其左右焦点,点为椭圆上一点,且.
(1)求的面积. (2)直线过点与椭圆交于两点,若为弦的中点,求的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是曲线上任意一点, 则点到直线的距离的最小值
是(  )
A.1B. C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是直线上的两个动点,线段的长为的中点.
(1)求动点的轨迹的方程;
(2)过点任意作直线(与轴不垂直),设与(1)中轨迹交于两点,与轴交于点.若,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆与双曲线有相同的焦点,则的值是 (   )
A.B.1或–2C.1或D.1

查看答案和解析>>

同步练习册答案