分析 使用二倍角公式化简解出B,使用余弦定理得出ac的最大值,代入计算即可.
解答 解:∵cos2B+$\frac{1}{2}$sin2B=1,∴$\frac{1}{2}$(1+cos2B)+$\frac{1}{2}$sin2B=1,即sin2B+cos2B=1.
两边平方得2sin2Bcos2B=0,即sin4B=0,
∵0<B<$\frac{π}{2}$,∴0<4B<2π.
∴4B=π,即B=$\frac{π}{4}$.
∵|$\overrightarrow{BC}+\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=b=3,
∴cosB=$\frac{{a}^{2}+{c}^{2}-9}{2ac}=\frac{\sqrt{2}}{2}$,
∴a2+c2=9+$\sqrt{2}ac$≥2ac,
∴ac≤$\frac{9(2+\sqrt{2})}{2}$.
∴当ac=$\frac{9(2+\sqrt{2})}{2}$时,$\frac{16b}{ac}$=$\frac{48}{ac}$取得最小值$\frac{32-16\sqrt{2}}{3}$.
故答案为$\frac{32-16\sqrt{2}}{3}$.
点评 本题考查了三角函数的恒等变换,余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤2} | B. | {x|-1≤x≤0} | C. | {x|1≤x≤2} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)>eaf(0) | B. | f(a)<eaf(0) | C. | f(a)<$\frac{f(0)}{{e}^{a}}$ | D. | f(a)>$\frac{f(0)}{{e}^{a}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com