分析 由已知得f(x)+f(1-x)=$\frac{1}{2}$,由此能求出f(-3)+f(-2)+…+f(0)+…+f(3)+f(4)的值.
解答 解:∵f(x)=$\frac{1}{{4}^{x}+2}$,
∴f(x)+f(1-x)=$\frac{1}{{4}^{x}+2}+\frac{1}{{4}^{1-x}+2}$=$\frac{1}{{4}^{x}+2}$+$\frac{{4}^{x}}{4+2×{4}^{x}}$=$\frac{\frac{1}{2}(2+{4}^{x})}{{4}^{x}+2}$=$\frac{1}{2}$,
∴f(-3)+f(-2)+…+f(0)+…+f(3)+f(4)
=4[f(-3)+f(4)]
=4×$\frac{1}{2}$
=2.
故答案为:2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{49}$ | B. | $\frac{5\sqrt{7}}{14}$ | C. | $\frac{9}{7}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{64}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com