精英家教网 > 高中数学 > 题目详情
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为(  )
A.$\frac{16}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{32}{3}$D.$\frac{64}{3}$

分析 根据三视图作出三棱锥的直观图,根据三视图中的数据计算棱锥的体积.

解答 解由三视图可知三棱锥是从边长为4的正方体中截出来的M-ADD′,其中M为BC的中点.
∴三棱锥的体积V=$\frac{1}{3}{S}_{△ADM}•DD′$=$\frac{1}{3}×\frac{1}{2}×{4}^{2}×4$=$\frac{32}{3}$.
故选:C.

点评 本题考查了正方体的结构特征,棱锥的三视图和体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.判断点P(-2,3)、Q(4,2)是否为直线y=$\frac{1}{2}$x上的点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{1}{{4}^{x}+2}$,则f(-3)+f(-2)+…+f(0)+…+f(3)+f(4)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.己知x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2$\sqrt{5}$时,则4a2+b2的最小值为(  )
A.5B.10C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简$\sqrt{1-2tan{4cos}^{2}4}$+$\sqrt{1{-sin}^{2}4}$=-sin4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,正方体ABCD-A1B1C1D1的棱长为1,请在此正方体中取出四个顶点构成一个三棱锥,满足三棱锥的四个面都是直角三角形,并求此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=4,b=$\frac{5}{2}$,5cos(B+C)+3=0,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.本着健康、低碳的生活理念,湛江市区采用公共自行车的人越来越多,使用年租卡租车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).假设甲、乙两人相互独立地用年租卡每天租车一次.已知甲、乙不超过两小时还车的概率分别为$\frac{1}{4}$,$\frac{1}{2}$;两小时以上且不超过三小时还车的概率分别为$\frac{1}{2}$,$\frac{1}{4}$;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙两人某一天在三小时以上且不超过四小时还车的概率.
(Ⅱ)记甲、乙两人一天所付的租车费用之和为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是$\frac{2}{3}$和$\frac{1}{3}$.每人限抽一次,100%中奖.小张,小王,小李,小赵四个金冠买家约定零点整抽奖.
(I)试求这4人中恰有1人抽到500元代金券的概率;
(Ⅱ)这4人中抽到200元、500元代金券的人数分别用X、Y表示,记ξ=XY,求随机变量ξ的分布列与数学期望.

查看答案和解析>>

同步练习册答案