精英家教网 > 高中数学 > 题目详情
求不等式
1
2x-1
1
1-2x-1
的解集.
考点:其他不等式的解法
专题:不等式的解法及应用
分析:作差后化积,结合图形(穿根法),利用对数函数的性质即可求得答案
解答: 解:∵
1
2x-1
-
1
1-2x-1
=
4-3•2x
(2x-1)(2-2x)
=
3•2x-4
(2x-1)(2x-2)
>0,

由图知1<2x
4
3
或2x>2,
解得0<x<log2
4
3
,或x>1.
∴原不等式的解集为{x|0<x<log2
4
3
,或x>1}.
点评:本题考查分式不等式的解法,作差后化积,利用数形结合是解决问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}满足:a2=4,公比q=2,数列{bn}的前n项和为Sn,且Sn=
4
3
bn-
2
3
an+
2
3
(n∈N*).
(1)求数列{an}和数列{bn}的通项an和bn
(2)设Pn=
an
Sn
(n∈N*),证明:
n
i=1
Pi
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个几何体是由圆柱OO′和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,EA⊥平面ABC,AB⊥AC,AB=AC,AE=2

(Ⅰ)求证:AC⊥BD;
(Ⅱ)求O′到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市文化馆在春节期间举行高中生“蓝天海洋杯”象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为
2
3
,且各局比赛胜负互不影响.
(Ⅰ)求比赛进行4局结束,且乙比甲多得2分的概率;
(Ⅱ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为2
2
的正方形,其他四个侧面是侧棱长为
5
的等腰三角形,过棱PD的中点E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分别交四棱锥各棱F、G、H.
(Ⅰ)证明:EF∥平面ABCD;
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,M为正方形AA1D1D的中心,N为棱AB的中点.
(1)求证:MN∥面BB1D1D;
(2)求二面角D1-MB1-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1是直棱柱,AB⊥AC,AB=AC=AA1=2,点MN分别为A1B和B1C1的中点.
(Ⅰ)求证:MN∥平面A1ACC1
(Ⅱ)求点B到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:an+2Sn-1=0,a1=1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,PB⊥平面ABCD.
(l)若AC=6,BD=8,PB=3,求三棱锥A一PBC的体积;
(2)若点E是DP的中点,证明:BD⊥平面ACE.

查看答案和解析>>

同步练习册答案