(本小题满分12分)
已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为。
(1)求证P的纵坐标为定值; (4分)
(2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和; (5分)
(3)若m∈N时,不等式<横成立,求实数a的取值范围。(3分)
(1)略
(2)(3m-1)
(3)
【解析】解答:(1)由=,知x+x=1,
则y+y=+=…= 故=。-------4分
(2)已知S=f()+f()+f()+…+f()+f()
易证f()+f()=,f(1)= ----------------6分
前m-1项逆序相加2S=[f()+f()]+[f()+f()]+[f()+f()]+…+[f()+f()]+[f()+f()]
=(3m-1) ------------9分
(3)<a(-)<0依题意知对任意m∈N恒成立,显然a≠0,
(Ⅰ)当a<0时,显然->0,则a<0,
当m取偶数时,显然不成立,故此时不合题意 ---------10分
(Ⅱ)当a>0时,a>0,则需-<0,解得a>=1+,m∈N时,单调递减,故1+≤,故此时a>.
综上所述:a>。 -----------12 分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com