精英家教网 > 高中数学 > 题目详情
20.求下列各式的值:
(1)log${\;}_{\frac{1}{3}}$81;                    (2)lg0.001;                       (3)log${\;}_{(\sqrt{5}-2)}$($\sqrt{5}$+2).

分析 直接利用对数的性质和运算法则求解.

解答 解:(1)log${\;}_{\frac{1}{3}}$81=$\frac{lg81}{lg\frac{1}{3}}$=4lg3$\frac{4lg3}{-lg3}$=-4.
(2)lg0.001=-3.
(3)log${\;}_{(\sqrt{5}-2)}$($\sqrt{5}$+2)=log${\;}_{(\sqrt{5}-2)}$($\sqrt{5}$-2)-1=-1.

点评 本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若对于任意实数x∈[e,e2],不等式$\frac{{e}^{m}}{2}$>x-$\frac{{e}^{2}}{lnx}$恒成立,则实数的取值范围是 (  )
A.(-∞,-2)B.(-∞,2)C.($\frac{1}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={-2,-1,0},B={0,1,2},写出A∪B所有子集和真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x),且f(x)在[0,+∞)上单调递减,则不等式f(lnx)<f(1)的解集是{x|x>e或0<x<$\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=$\sqrt{2co{s}^{2}x+5sinx-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的方程9x+a•3x+1=0有正实数解,则实数a的取值范围为(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a=log${\;}_{\frac{1}{2}}$2,b=20.6,c=0.62,则a,b,c的大小关系为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,某公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(Ⅰ)设AD=x,DE=y,求y关于x的函数关系式;
(Ⅱ)如果DE是灌溉水管,我们希望它最短,则DE的位置应在哪里?请予以证明.

查看答案和解析>>

同步练习册答案