精英家教网 > 高中数学 > 题目详情
5.证明:f(x)=x${\;}^{\frac{3}{5}}$在(0,+∞)上是增函数.

分析 利用函数的导数大于0,证明函数是增函数即可.

解答 证明:∵f(x)=x${\;}^{\frac{3}{5}}$,
∴f′(x)=$\frac{3}{5}$${x}^{-\frac{2}{5}}$=$\frac{3}{5}$•$\frac{1}{\root{5}{{x}^{2}}}$>0恒成立;
∴函数f(x)在(0,+∞)上是增函数.

点评 本题考查了函数单调性的判断与证明问题,利用导数可以判断函数的单调性问题,利用定义也可以判断函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=log2(x+1)-$\frac{1}{2}$x2的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过点P(1,2),倾斜角α=$\frac{π}{3}$.
(I)写出直线l的参数方程;
(II)设l与圆x2+y2=2相交与两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax3+x2(a∈R)在x=-2处取得极值,则a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是(  )
A.30B.25C.22D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,AB为⊙O的直径,AC切⊙O于点A,且AC=2$\sqrt{2}$,过C的割线CMN交AB的延长线于点D,若CM=MN=ND,则BD的长等于$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,PA为半径等于2的圆O的切线,A为切点,PO交圆O于B,C两点,$PA=\sqrt{5}$,∠BAC的角平分线与BC交于点D.
(1)求证AB•PC=PA•AC;(2)求$\frac{CD}{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x+m|.
(Ⅰ) 解关于m的不等式f(1)+f(-2)≥5;
(Ⅱ)当x≠0时,证明:$f({\frac{1}{x}})+f({-x})≥2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.海南中学对高二学生进行心理障碍测试得到如下列联表:
焦虑说谎懒惰总计
女生5101530
男生20105080
总计252065110
试说明在这三种心理障碍中哪一种与性别关系最大?
参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828

查看答案和解析>>

同步练习册答案