精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,Sn为{an}的前N项和,S3=15,a5=-1
(1)求{an}的通项an与Sn
(2)bn=an+3n-9,求Tn=
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
(1)由已知得
a5=a1+4d=-1
S3=3a1+
3×2
2
d=15
,解得
a1=7,d=-2,所以an=-2n+9,Sn=-n2+8n
(2)bn=an+3n-9=-2n+9+3n-9=n,
所以
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1

所以Tn=b1+b2+…+bn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案