精英家教网 > 高中数学 > 题目详情

18、在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设E为侧棱PC上一点,数学公式,试确定λ的值,使得二面角E-BD-P的大小为45°.

解:(1)证明:平面PCD⊥底面ABCD,PD⊥CD,所以PD⊥平面ABCD,
所以PD⊥AD.如图,以D为原点建立空间直角坐标系D-xyz.
则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1)(6分)=(-1,1,0).
所以=0,BC⊥DB,
又由PD⊥平面ABCD,可得PD⊥BC,又BD∩PD=D
所以BC⊥平面PBD.(8分)
(2)平面PBD的法向量为=(-1,1,0),,λ∈(0,1),所以E(0,2λ,1-λ),
设平面QBD的法向量为n=(a,b,c),=(0,2λ,1-λ)
由n•=0,n•=0,得所以,
,(10分)
由cos解得λ=-1(12分)
(用传统方法解得答案酌情给分)
分析:(1)由题设条件可证得DP,DA,DC三线两两垂直,故可以D为原点建立空间直角坐标系D-xyz,按题中所给的条件,给出各点的坐标,求出直线BC的方向向量以及平面PBD的法向量,由数量积为0证明线面垂直.
(2)由(1)中的坐标系,及E为侧棱PC上一点,,给出用参数表示的点E的坐标,求出两个平面EBD与平面PBD的法向量,由公式用参数表示出二面角的余弦值,再令其值是45°的余弦值,解出其参数值即可.
点评:本题考查二面角的平面角的求法,本题解答用的是向量法,求解此类题,关键是掌握住向量公式与所求解问题的对应,建立合适的空间坐标系可以大大降低运算的难度,此种做法运算量较大,解题时要认真严谨,避免运算出错,导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案