精英家教网 > 高中数学 > 题目详情
(2013•韶关二模)已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2ancn=
1bnbn+1
,记数列{cn}的前n项和Tn.若对?n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.
分析:(1)由 5S1,S3,3S2成等差数列,依题意,可化简求得q=2,首项a1=2,从而可求得数列{an}的通项公式;
(2)依题意,可求得cn=
1
n
-
1
n+1
,从而可得Tn=
n
n+1
,由
n
n+1
≤k(n+4)可求得k≥
1
n+
4
n
+5
,利用基本不等式即可求得k的取值范围.
解答:解:(1)∵5S1,S3,3S2成等差数列,
∴2S3=5S1+3S2…(1分)
即2(a1+a1q+a1q2)=5a1+3(a1+a1q),
化简得 2q2-q-6=0…(2分)
解得:q=2或q=-
3
2
…(3分)
因为数列{an}的各项均为正数,所以q=-
3
2
不合题意…(4分)
所以{an}的通项公式为:an=2n.…(5分)
(2)由bn=log2an得bn=log22n=n…(6分)
∴cn=
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1
…(7分)
∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
…(8分)
n
n+1
≤k(n+4)
∴k≥
n
(n+1)(n+4)
=
n
n2+5n+4
…(9分)
=
1
n+
4
n
+5
…-(11分)
∵n+
4
n
+5≥2
n•
4
n
+5=9,当且仅当n=
4
n
,即n=2时等号成立------(12分)
1
n+
4
n
+5
1
9
 …(13分)
∴k的取值范围[
1
9
,+∞).…(14分)
点评:本题考查等差数列与等比数列的综合,考查等差数列的通项公式,考查裂项法求和与基本不等式的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•韶关二模)函数f(x)=lnx-
1
x-1
的零点的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)在极坐标系中,过点A(1,-
π2
)引圆ρ=8sinθ的一条切线,则切线长为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)若a,b∈R,i为虚数单位,且(a+i)i=b+
5
2-i
,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为
10
2
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案