精英家教网 > 高中数学 > 题目详情
设f(x)=asin2x+bcos2x,a,b∈R,ab≠0.若f(x)≤|f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z).
以上结论正确的是
①③
①③
(写出正确结论的编号).
分析:由f(x)≤|f(
π
6
)|可知x=
π
6
是函数f(x)的对称轴,然后根据三角函数的图象和性质分别进行判断即可.
解答:解:则f(x)=asin2x+bcos2x=
a2+b2
sin(2x+θ)
,其中cos?θ=
a
a2+b2
,sin?θ=
b
a2+b2

若f(x)≤|f(
π
6
)|可知x=
π
6
是函数f(x)的对称轴,
∴2×
π
6
+θ=
π
2
+kπ
,则θ=
π
6
+kπ,k∈Z

f(x)=
a2+b2
sin?(2x+
π
6
+kπ)=±
a2+b2
sin?(2x+
π
6
)

①f(
11π
12
)=±
a2+b2
sin?(2×
11π
12
+
π
6
)=±
a2+b2
sin?2π=0
,成立.
②|f(
10
)|=
a2+b2
sin?(2×
10
+
π
6
)|=
a2+b2
|sin?(
5
+
π
6
)|
a2+b2
|sin?(
5
+
π
6
)|

|f(
π
5
)|=
a2+b2
sin?(2×
π
5
+
π
6
)|=
a2+b2
|sin?(
5
+
π
6
)|

∴|f(
10
)|=|f(
π
5
)|,∴②错误.
③由函数表达式可知f(-x)≠f(x),且f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数,∴③正确.
④∵f(x)=
a2+b2
sin?(2x+
π
6
+kπ)=±
a2+b2
sin?(2x+
π
6
)
,表达式不确定,
∴函数的单调递增区间不确定,∴④错误.
故答案为:①③.
点评:本题主要考查三角函数的图象和性质,利用辅助角公式是解决本题的关键,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=Asin(ωx+φ)(A>0,ω>0)的图象关于直线x=
π3
对称,它的最小正周期是π,则f(x)图象上的一个对称中心是
 
(写出一个即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

13、设f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β是常数),且f(2009)=5,则f(2010)=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a、b、α、β∈R且ab≠0,若f(2009)=5.则f(2010)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β)+5,且f(2009)=2,则f(2010)=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β为非零常数.若f(2012)=-1,则f(2013)=
 

查看答案和解析>>

同步练习册答案