精英家教网 > 高中数学 > 题目详情
9.观察下列等式:
$\frac{3}{1×2}×\frac{1}{2}=1-\frac{1}{2^2}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}=1-\frac{1}{{3×{2^2}}}$,
$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+\frac{5}{3×4}×\frac{1}{2^3}=1-\frac{1}{{4×{2^3}}}$,
…,
由以上等式得$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+…+\frac{7}{5×6}×\frac{1}{2^5}$==$1-\frac{1}{{6×{2^5}}}$.

分析 根据题意,由每个等式的左边的变化规律,以及右边式子的变化规律,可得答案.

解答 解:由题意可知,得$\frac{3}{1×2}×\frac{1}{2}+\frac{4}{2×3}×\frac{1}{2^2}+…+\frac{7}{5×6}×\frac{1}{2^5}$=$1-\frac{1}{{6×{2^5}}}$,
故答案为:$1-\frac{1}{{6×{2^5}}}$

点评 本题考查了归纳推理,培养学生分析问题的能力.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,Sn=2n,an=$\left\{\begin{array}{l}{2,}&{n=1}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定点M(-1,2),动点N在单位圆x2+y2=1上运动.以0M,0N为邻边作平行四边形OMPN,则点P到直线3x+4y+10=0距离的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求垂直于直线3x-2y+4=0,且过直线2x-3y+1=0和3x-4y-2=0的交点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数求值算法中需要条件语句的函数是(  )
A.f(x)=x3B.f(x)=x2C.f(x)=4x-x2D.f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(0,2π)内,与$-\frac{7π}{6}$终边相同的角是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ex+x-2的零点为x1,函数g(x)=lnx+x2-3的零点为x2,则(  )
A.g(x1)<0,f(x2)>0B.g(x1)>0,f(x2)<0C.g(x1)>0,f(x2)>0D.g(x1)<0,f(x2)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1所示,在边长为12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1′分别交BB1,CC1于点P,Q,将该正方形沿BB1、CC1折叠,使得A′A1′与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)求证:AB⊥PQ;
(Ⅱ)在底边AC上是否存在一点M,满足BM∥平面APQ,若存在试确定点M的位置,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=2ax-\frac{a}{x}+lnx$
(1)当$a=-\frac{1}{3}时$,求函数的单调区间
(2)若f(x)在(0,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案