【题目】设f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3对一切实数x恒成立,求实数a的取值范围;
(2)解关于x的不等式f(x)<a-2(a∈R).
【答案】(1) [
,+∞).(2)答案不唯一,见解析
【解析】
(1)根据条件不等式f(x)≥-3对一切实数x恒成立,转化为ax2+(1-a)x+a≥0对一切实数x恒成立;分a=0和a≠0两种情况讨论,即可得出结论;
(2)不等式f(x)<a-2代入化简得ax2+(1-a)x-1<0,对a的取值进行分类讨论,即可得不等式的解集.
解:(1)由条件知不等式f(x)≥-3对一切实数x恒成立;
即ax2+(1-a)x+a≥0对一切实数x恒成立;
当a=0时,x≥0,显然不能恒成立;
当a≠0时,要使得ax2+(1-a)x+a≥0对一切实数x恒成立,
满足
,解得a≥
;
综上述,实数a的取值范围是[
,+∞).
(2)由条件化简不等式f(x)<a-2,
得ax2+(1-a)x-1<0,
①当a=0时,不等式等价于:x-1<0,∴x<1,
不等式的解集为(-∞,1);
当a≠0时,方程(x-1)(ax+1)=0有两个实根,1和
;
②当a>0时,1>
,不等式等价于(x-1)(x+
)<0,
∴不等式的解集为(
,1);
③当a<0时,不等式等价于(x-1)(x+
)>0,
当-1<a<0时,1<
,
不等式的解集为(-∞,1)∪(-
,+∞);
当a=-1时,1=
,不等式的解集为{x|x≠-1}.
当a<-1时,1>
,
不等式的解集为(-∞,
)∪(1,+∞);
科目:高中数学 来源: 题型:
【题目】已知梯形
中,
,
,
,
,
是
上的点,![]()
是
的中点,沿
将梯形
折起,使平面
平面
.
![]()
(1)当
时,求证:
;
(2)记以
为顶点的三棱锥的体积为
,求
的最大值;
(3)当
取得最大值时,求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知半圆
:
,
、
分别为半圆
与
轴的左、右交点,直线
过点
且与
轴垂直,点
在直线
上,纵坐标为
,若在半圆
上存在点
使
,则
的取值范围是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若
在其定义域内为单调递增函数,求实数
的取值范围;
(2)设
,且
,若在
上至少存在一点
,使得
成立,求实数
的取值范围;
(3)求证:对任意的正整数
,都有
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,离心率为
,
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)设直线
斜率为
,且
与椭圆
的另一个交点为
,是否存在点
,使得
若存在,求
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com