13£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã$A£¨-\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÇÒ¶ÌÖáÁ½¸ö¶¥µãÓëÒ»¸ö½¹µãÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚÒÔÔ­µãΪԲÐĵÄÔ²£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²CºãÓÐÁ½¸ö½»µãP£¬Q£¬ÇÒ$\overrightarrow{OP}¡Í\overrightarrow{OQ}$£¿Èô´æÔÚ£¬Çó³ö¸ÃÔ²µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃ£º$a=\sqrt{2}b$£¬$\frac{1}{2{b}^{2}}+\frac{3}{4{b}^{2}}$=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©¼ÙÉèÂú×ãÌõ¼þµÄÔ²´æÔÚ£¬Æä·½³ÌΪ£ºx2+y2=r2£¨0£¼r£¼1£©£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬¶þÕßÁªÁ¢£¬µÃ£º£¨1+2k2£©x2+4kmx+2m2-2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏòÁ¿´¹Ö±¡¢Ö±ÏßÓëÔ²ÏàÇУ¬½áºÏÒÑÖªÄÜÇó³ö´æÔÚÔ²ÐÄÔÚÔ­µãµÄÔ²Âú×ãÌâÒ⣮

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã$A£¨-\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÇÒ¶ÌÖáÁ½¸ö¶¥µãÓëÒ»¸ö½¹µãÇ¡ºÃΪֱ½ÇÈý½ÇÐΣ¬
¡àÓÉÌâÒâµÃ£º$a=\sqrt{2}b$£¬$\frac{1}{2{b}^{2}}+\frac{3}{4{b}^{2}}$=1£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡­£¨5·Ö£©
£¨2£©¼ÙÉèÂú×ãÌõ¼þµÄÔ²´æÔÚ£¬Æä·½³ÌΪ£ºx2+y2=r2£¨0£¼r£¼1£©
µ±Ö±ÏßP£¬QµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬
ÓÉ$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$£¬µÃ£º£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÁîP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÔòÓУº${x_1}+{x_2}=-\frac{4km}{{1+2{k^2}}}$£¬${x_1}{x_2}=\frac{{2{m^2}-2}}{{1+2{k^2}}}$¡­£¨8·Ö£©
¡ß$\overrightarrow{OP}$¡Í$\overrightarrow{OQ}$£¬¡à${x_1}{x_2}+{y_1}{y_2}=0⇒£¨1+{k^2}£©{x_1}{x_2}+km£¨{x_1}+{x_2}£©+{m^2}=0$£®
¡à$\frac{{£¨1+{k^2}£©£¨2{m^2}-2£©}}{{1+2{k^2}}}-\frac{{4{k^2}{m^2}}}{{1+2{k^2}}}+{m^2}=0$£¬¡à3m2=2k2+2£®¡­£¨10·Ö£©
¡ßÖ±ÏßPQÓëÔ²ÏàÇУ¬¡à${r^2}=\frac{m^2}{{1+{k^2}}}=\frac{2}{3}$£¬¡à´æÔÚÔ²${x^2}+{y^2}=\frac{2}{3}$
µ±Ö±ÏßPQµÄбÂʲ»´æÔÚʱ£¬Ò²ÊʺÏ${x^2}+{y^2}=\frac{2}{3}$£®
×ÛÉÏËùÊö£¬´æÔÚÔ²ÐÄÔÚÔ­µãµÄÔ²${x^2}+{y^2}=\frac{2}{3}$Âú×ãÌâÒ⣮¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÔ²µÄ·½³ÌÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢ÏòÁ¿´¹Ö±¡¢Ö±ÏßÓëÔ²ÏàÇС¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚÊýÁÐ{an}ÖУ¬an£¾0£¬a1=$\frac{1}{2}$£¬Èç¹ûan+1ÊÇ1Óë$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$µÄµÈ±ÈÖÐÏÄÇôa1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+¡­+$\frac{{a}_{100}}{10{0}^{2}}$µÄÖµÊÇ$\frac{100}{101}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¡÷ABCÖУ¬¸ø³öÏÂÁÐÈý¸ö²»µÈʽ£º$\overrightarrow{AB}$$•\overrightarrow{AC}$£¾0£¬$\overrightarrow{BA}$$•\overrightarrow{BC}$£¾0£¬$\overrightarrow{CA}$$•\overrightarrow{CB}$£¾0£¬ÆäÖУ¬Äܹ»³ÉÁ¢µÄ²»µÈʽ£¨¡¡¡¡£©
A£®ÖÁ¶à1¸öB£®ÓÐÇÒ½öÓÐ1¸öC£®ÖÁ¶à2¸öD£®ÖÁÉÙ2¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÔµÈÑüÖ±½Ç¡÷ABCµÄÁ½¸öµ×½Ç¶¥µãΪ½¹µã£¬²¢ÇÒ¾­¹ýÁíÒ»¶¥µãµÄÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈôµãPÔÚÒÔF1£¨-1£¬0£©£¬F2£¨1£¬0£©Îª½¹µãµÄÍÖÔ²CÉÏ£¬ÇÒ¡÷PF1F2µÄÖܳ¤Îª6£¬ÔòÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{2x-1£¬x£¼1}\\{\frac{1}{x}£¬x¡Ý1}\end{array}\right.$Ôòf£¨f£¨2£©£©=£¨¡¡¡¡£©
A£®0B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèx¡ÊR£¬Èôº¯Êýf£¨x£©=ex-ln2£¬Ôòf¡ä£¨0£©=£¨¡¡¡¡£©
A£®-ln2B£®1-ln2C£®4D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}+3£¬x£¾0}\\{x-1£¬x¡Ü0}\end{array}\right.$£¬Ôòf£¨1£©=£¨¡¡¡¡£©
A£®5B£®0C£®-5D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨3£¬-2£¬1£©£¬$\overrightarrow{b}$=£¨-2£¬4£¬0£©£¬Ôò4$\overrightarrow{a}$+2$\overrightarrow{b}$µÈÓÚ£¨¡¡¡¡£©
A£®£¨16£¬0£¬4£©B£®£¨8£¬0£¬4£©C£®£¨8£¬16£¬4£©D£®£¨8£¬-16£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸