精英家教网 > 高中数学 > 题目详情
(2012•天津模拟)在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)求证:PB∥平面ACM;
(Ⅱ)求证:AD⊥平面PAC;
(Ⅲ)求二面角M-AC-D的正切值.
分析:(Ⅰ)连接OM,BD,由M,O分别为PD和AC中点,知OM∥PB,由此能够证明PB∥平面ACM.
(Ⅱ)由PO⊥平面ABCD,知PO⊥AD,由∠ADC=45°,AD=AC=1,知AC⊥AD,由此能够证明AD⊥平面PAC.
(Ⅲ)取DO中点N,连接MN,由MN∥PO,知MN⊥平面ABCD.过点N作NE⊥AC于E,由E为AO中点,连接ME,由三垂线定理知∠MEN即为所求,由此能求出二面角M-AC-D的正切值.
解答:(Ⅰ)证明:连接OM,BD,
∵M,O分别为PD和AC中点,
∴OM∥PB,
∵OM?平面ACM,PB?ACM平面,
∴PB∥平面ACM….(4分)
(Ⅱ)证明:∵PO⊥平面ABCD
∴PO⊥AD,
∵∠ADC=45°,AD=AC=1,
∴AC⊥AD,
∵AC∩PO=O,AC,PO?平面PAC,
∴AD⊥平面PAC.…..(8分)
(Ⅲ)解:取DO中点N,连接MN,则MN∥PO,
∴MN⊥平面ABCD
过点N作NE⊥AC于E,则E为AO中点,
连接ME,由三垂线定理可知∠MEN即为二面角M-AC-D的平面角,
∵MN=1,NE=
1
2

∴tan∠MEN=2…..(13分)
点评:本题考查直线与平面平行、直线现平面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,仔细解答,注意三垂直线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津模拟)设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义fk(x)=
f(x),f(x)≤K
K,f(x)>K
,给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有fk(x)=f(x),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=ax-g(x)(a>0,且a≠1);②g(x)≠0;③f(x)•g′(x)>f′(x)•g(x).若
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知集合M={x|log2x≤1},N={x|x2-2x≤0},则“a∈M”是“a∈N”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)已知等差数列{an},a1=2,a3=6,若将a1,a4,a5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为
-11
-11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津模拟)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=
2
,E为PD上一点,PE=2ED.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角D-AC-E的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案