精英家教网 > 高中数学 > 题目详情
(2013•郑州二模)若x∈(e-1,1),a=lnx,b=(
1
2
)lnx
,c=elnx,则a,b,c的大小关系为(  )
分析:依题意,由对数函数与指数函数的性质可求得a<0,b>1,
1
e
<c<1,从而可得答案.
解答:解:∵x∈(e-1,1),a=lnx
∴a∈(-1,0),即a<0;
又y=(
1
2
)
x
为减函数,
∴b=(
1
2
)
lnx
(
1
2
)
ln1
=(
1
2
)
0
=1,即b>1;
又c=elnx=x∈(e-1,1),
∴b>c>a.
故选B.
点评:本题考查有理数指数幂的化简求值,考查对数值大小的比较,掌握对数函数与指数函数的性质是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州二模)设f(x)是定义在R上的增函数,且对于任意的x都有f(1-x)+f(1+x)=0恒成立.如果实数m、n满足不等式组
f(m2-6m+23)+f(n2-8n)<0
m>3
,那么m2+n2的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)设z=x+y,其中x,y满足
x+2y≥0
x-y≤0
0≤y≤k
,当z的最大值为6时,k的值为
3
3

查看答案和解析>>

同步练习册答案