精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两个班级(各40名学生)进行一门考试,为易于统计分析,将甲、乙两个班学生的成绩分成如下四组:,并分别绘制了如下的频率分布直方图:

规定:成绩不低于90分的为优秀,低于90分的为不优秀.

1)根据这次抽查的数据,填写下面的列联表:

优秀

不优秀

合计

甲班

乙班

合计

2)根据(1)中的列联表,能否有的把握认为成绩是否优秀与班级有关?

附:临界值参考表与参考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

【答案】1)填表见解析;(2)没有的把握认为成绩是否优秀与班级有关

【解析】

1)由频率分布直方图求出甲班、乙班优秀的人数即可;

2)直接利用卡方公式结合临界值参考表即可得到答案.

1)由题意,甲班优秀的人数为人,

乙班优秀的人数为

所以列联表,如下:

优秀

不优秀

合计

甲班

10

30

40

乙班

6

34

40

合计

16

64

80

2

所以没有的把握认为成绩是否优秀与班级有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:050为优;51100为良;101150为轻度污染;151200为中度污染;201300为重度污染;>300为严重污染.一环保人士记录了某地2020年某月10天的AQI的茎叶图如图所示.

1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共有30天计算)

2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:

(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;

(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?

优质品

非优质品

合计

合计

(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;

(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,点在棱上,且.

(Ⅰ)求证:

(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),在以原点为极点,轴的正半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线两点,求点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

同步练习册答案