精英家教网 > 高中数学 > 题目详情
7.若曲线y=ex在某点处的切线l过原点O,则l的斜率为e.

分析 因为曲线的切线的斜率是曲线在切点处的导数,所以只需求曲线在x=0的导数即可.

解答 解:y′=ex
设切点的坐标为(x0,${e}^{{x}_{0}}$),切线的斜率为k,
则k=${e}^{{x}_{0}}$,故切线方程为y-${e}^{{x}_{0}}$=${e}^{{x}_{0}}$(x-x0),
又切线过原点,
∴-${e}^{{x}_{0}}$=${e}^{{x}_{0}}$(-x0),∴x0=1,y0=e,k=e.
则切线方程为y=ex
故答案为e.

点评 本题主要考查曲线的切线的斜率与导数的关系,做题时要牢记求导公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知x+x-1=3,则${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$值为(  )
A.$3\sqrt{3}$B.2$\sqrt{5}$C.$4\sqrt{5}$D.$-4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$.
(1)证明:f(x)是定义域内的增函数;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有下列命题:
①在函数y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象中,相邻两个对称中心的距离为π;
②命题:“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sin≤1,则¬p是:存在x0∈R,使得sinx0>1;
⑤命题“若0<a<1,则loga(a+1)>loga(1+$\frac{1}{a}$)”是真命题;
⑥|$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;  
其中所有真命题的序号是③④⑤⑦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求极限$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]时恒成立,则实数m的取值范围是(-∞,$\frac{5}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知Rt△ABC的周长为定值2,则它的面积最大值为3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.我们把b除a的余数r记为r=abmodb,例如4=9bmod5,如图所示,若输入a=209,b=77,则循环体“r←abmodb”被执行了4次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P(x,y)在椭圆x2+4y2=4上,则$\frac{3}{4}$x2+2x-y2的最大值为(  )
A.-2B.7C.2D.-1

查看答案和解析>>

同步练习册答案