精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中是实数常数,).

(1)若,函数的图象关于点成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

【答案】(1)(2)(3)

【解析】

1)将化为,类比的图象得对称中心,对应相等可求得结果;(2)整理可得:;当时符合题意;时由单调性可知不合题意;当时,可知只需,从而得到的范围;综合三种情况得到结果;(3)根据奇偶性和函数值可得:,根据得到,根据单调性求解出的最小值,则根据求得结果.

(1)

类比函数的图象,可知函数的图象的对称中心是

函数的图象的对称中心

(2)由(1)知,

依据题意,对任意,恒有.

①当时,,符合题意

②当时,对任意,则

恒有,不符合题意;

③当时,函数上是单调递减函数,且满足

因此,只需即可

解得:

综上所述,实数的范围

(3)依据题设:,解得:

于是

,得

因此

函数是增函数

.

所求负实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,某公路 一侧有一块空地 ,其中 .当地政府拟在中间开挖一个人工湖△OMN,其中MN都在边AB上(MN不与AB重合,MAN之间),且MON=30°.

(1)若M在距离A2 km处,求点MN之间的距离;

(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+2|﹣|x﹣1|
(I)画出函数y=f(x)的图象;
(II)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求实数的值;

(2)若,试讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解放军某部在实兵演练对抗比赛中,红、蓝两个小组均派6人参加实弹射击,其所得成绩的茎叶图如图所示.
(1)根据射击数据,计算红、蓝两个小组射击成绩的均值与方差,并说明红军还是蓝军的成绩相对比较稳定;
(2)若从蓝军6名士兵中随机抽取两人,求所抽取的两人的成绩之差不超过2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

若平均投入生产两种产品,可获得多少利润?

问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

同步练习册答案