精英家教网 > 高中数学 > 题目详情
精英家教网如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
4
5
|PD|
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程
(Ⅱ)求过点(3,0)且斜率
4
5
的直线被C所截线段的长度.
分析:(Ⅰ)由题意P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
4
5
|PD|,利用相关点法即可求轨迹;
(Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度.
解答:解:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp
由已知得:
xp=x
yp=
5
4
y

∵P在圆上,
x2+(
5
4
y)2=25
,即C的方程为
x2
25
+
y2
16
=1

(Ⅱ)过点(3,0)且斜率为
4
5
的直线方程为:y=
4
5
(x-3)

设直线与C的交点为A(x1,y1)B(x2,y2),
将直线方程y=
4
5
(x-3)代入C的方程,得
x2
25
 +
(x-3)2
25
=1
   即:x2-3x-8=0   ∴x1=
3-
41
2
x2=
3+
41
2

∴线段AB的长度为|AB|=
(x1-x2)2+(y1-y2)2
=
(1+
16
25
)(x1-x2)2
 
=
41•41
25
=
41
5
点评:此题重点考查了利用相关点法求动点的轨迹方程,还考查了联立直线方程与曲线方程进行整体代入,还有两点间的距离公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=
45
|PD|
(1)求:当P在圆上运动时,求点M的轨迹C的方程.
(2)直线l:kx+y-5=0恒与点M的轨迹C有交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影,M为线段PD上一点,|PD|=
2
|MD|.点A(0,
2
)、F1(-1,0).
(1)设在x轴上存在定点F2,使|MF1|+|MF2|为定值,试求F2的坐标,并指出定值是多少?
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=2上的动点,PD⊥x轴,垂足为D,M为线段PD上一点,且|PD|=
2
|MD|,点A、F1的坐标分别为(0,
2
),(-1,0).
(1)求点M的轨迹方程;
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名一模)如图,设P是圆x2+y2=2上的动点,点D是P在x轴上的投影.M为线段PD上一点,且|MD|=
2
2
|PD|

(1)当点P在圆上运动时,求点M的轨迹C的方程;
(2)已知点F1(-1,0),F2(1,0),设点A(1,m)(m>0)是轨迹C上的一点,求∠F1AF2的平分线l所在直线的方程.

查看答案和解析>>

同步练习册答案