精英家教网 > 高中数学 > 题目详情
(选做题)设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
解:(1)因为a,b,c 均为正实数,由柯西不等式得,
(a2+b2+c2)(12+12+12)≥(a+b+c)2=1,当且仅当a=b=c= 时等号成立,
∴a2+b2+c的最小值为  . 
(2)∵a,b,c均为正实数,
∴可得  (  + )≥ ≥ 
同理  (  + )≥ ,  (  + )≥ 
三个不等式相加得 
当且仅当a=b=c时等号成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)
设a,b是非负实数,求证:a2+b2
ab
(a+b).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)(不等式选做题)
 设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是
R
R

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省苏州市高三(上)期初数学试卷(解析版) 题型:解答题

(选做题)
设a,b是非负实数,求证:a2+b2(a+b).

查看答案和解析>>

科目:高中数学 来源:2013年陕西省高考数学试卷(文科)(解析版) 题型:填空题

(不等式选做题)
 设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是   

查看答案和解析>>

同步练习册答案