11£®Èçͼ£¬×ø±êÔ­µãOΪ¾ØÐÎABCDµÄ¶Ô³ÆÖÐÐÄ£¬¶¥µãAµÄ×ø±êΪ£¨1£¬t£©£¬AB¡ÎxÖᣬ¾ØÐÎA¡äB¡äC¡äD¡äÓë¾ØÐÎABCDÊÇÎ»ËÆÍ¼ÐΣ¬µãOÎªÎ»ËÆÖÐÐÄ£¬µãA¡ä£¬B¡ä·ÖÊǵãA£¬BµÄ¶ÔÓ¦µã£¬$\frac{A¡äB¡ä}{AB}$=k£®ÒÑÖª¹ØÓÚx£¬yµÄÔª¶þ´ÎÒ»´Î·½³Ì$\left\{\begin{array}{l}{mnx+y=3n+1}\\{3x+y=4}\end{array}\right.$£¨m£¬nÊÇʵÊý£©Î޽⣬ÔÚÒÔm£¬nÎª×ø±ê£¨¼ÇΪm£¬n£©µÄËùÓеĵãÖУ¬ÈôÓÐÇÒÖ»ÓÐÒ»¸öµãÂäÔÚ¾ØÐÎA¡äB¡äC¡äD¡äµÄ±ßÉÏ£®Ôòk•tµÄÖµµÈÓÚ1£®

·ÖÎö ÉèÏàËÆ±ÈΪk£¬ÔòµãA¡äµÄ×ø±êΪ£¨k£¬kt£©£¬¸ù¾Ý¹ØÓÚx£¬yµÄÔª¶þ´ÎÒ»´Î·½³Ì$\left\{\begin{array}{l}{mnx+y=3n+1}\\{3x+y=4}\end{array}\right.$£¨m£¬nÊÇʵÊý£©Î޽⣬¿ÉµÃ£ºmn=3ÇÒn¡Ù1£¬ÈôÓÐÇÒÖ»ÓÐÒ»¸öµãÂäÔÚ¾ØÐÎA¡äB¡äC¡äD¡äµÄ±ßÉÏ£®¸ù¾Ý·´±ÈÀýº¯ÊýµÄ¶Ô³ÆÐÔ£¬¿ÉµÃ·´±ÈÀýº¯Êýn=$\frac{3}{m}$£¨n¡Ù1£©µÄͼÏóÖ»¾­¹ýµãC¡ä£¬¼´A¡äµãµÄ×ø±êΪ£¨3£¬1£©£¬½ø¶øµÃµ½´ð°¸£®

½â´ð ½â£º¾ØÐÎA¡äB¡äC¡äD¡äÓë¾ØÐÎABCDÊÇÎ»ËÆÍ¼ÐΣ¬
ÉèÏàËÆ±ÈΪk£¬
¶¥µãAµÄ×ø±êΪ£¨1£¬t£©£¬
¡àµãA¡äµÄ×ø±êΪ£¨k£¬kt£©£¬
¡ß¹ØÓÚx£¬yµÄÔª¶þ´ÎÒ»´Î·½³Ì$\left\{\begin{array}{l}{mnx+y=3n+1}\\{3x+y=4}\end{array}\right.$£¨m£¬nÊÇʵÊý£©Î޽⣬
¡àmn=3ÇÒn¡Ù1£¬
¡ßÒÔm£¬nÎª×ø±ê£¨¼ÇΪm£¬n£©µÄËùÓеĵãÖУ¬ÈôÓÐÇÒÖ»ÓÐÒ»¸öµãÂäÔÚ¾ØÐÎA¡äB¡äC¡äD¡äµÄ±ßÉÏ£®
¡à·´±ÈÀýº¯Êýn=$\frac{3}{m}$µÄͼÏóÖ»¾­¹ýµãA¡äºÍµãC¡ä£¬
¶ø·´±ÈÀýº¯Êýn=$\frac{3}{m}$£¨n¡Ù1£©µÄͼÏóÖ»¾­¹ýµãC¡ä£¬
¼´A¡äµãµÄ×ø±êΪ£¨3£¬1£©£¬
¡àk•t=1£¬
¹Ê´ð°¸Îª£º1£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇ·´±ÈÀýº¯ÊýµÄ¶Ô³ÆÐÔ£¬Ò»Ôª¶þ´Î·½³Ì¸ùµÄ¸öÊýÅжϣ¬Î»ËÆÍ¼ÐΣ¬ÊdzõÖÐ֪ʶµÄ×ÛºÏÓ¦Óã¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1+a2+a3+a4+a5=8£¬ÇÒ$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{5}}$=2£¬Çóa3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª£ºÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦È}\\{y=2+sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©ÈôÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬µãPµÄ¼«×ø±êΪ£¨4£¬$\frac{¦Ð}{3}$£©£¬ÅжϵãPÊÇ·ñÔÚÖ±ÏßlÉÏ£»
£¨¢ò£©ÉèµãQÊÇÇúÏßCÉÏÒ»¸ö¶¯µã£¬ÇóµãQµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµÓë×îСֵµÄ²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®AΪ¡÷ABCµÄÄڽǣ¬ÈôcosA=$\frac{1}{2}$£¬Ôòsin£¨B+C£©µÈÓÚ$\frac{{\sqrt{3}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=loga£¨1-$\frac{a}{x}$£©£¬ÆäÖÐ0£¼a£¼1£®
£¨1£©Ö¤Ã÷£ºf£¨x£©ÊÇ£¨a£¬+¡Þ£©Éϵļõº¯Êý£»
£¨2£©Èôf£¨x£©=1£¬Çóx£»
£¨3£©Èôf£¨x£©£¾1£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ¾ØÐÎABCDÖУ¬AB=2£¬BC=t£¬¶ÔÓÚ±ßBC£¨º¬¶Ëµã£©ÉÏÈÎÒâÒ»µãP£¬ÔÚ±ßCD£¨º¬¶Ëµã£©ÉÏ×Ü´æÔÚÒ»µãQ£¬Ê¹$\overrightarrow{AP}$•$\overrightarrow{BQ}$=O£®
£¨1£©Ö¤Ã÷£º$\overrightarrow{AP}$•$\overrightarrow{AQ}$Ϊ¶¨Öµ£»
£¨2£©ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔڵȲîÊýÁÐ{an}ÖУ¬a1=$\frac{5}{6}$£¬d=-$\frac{1}{6}$£¬Ç°nÏîºÍSn=-5£¬Çón¼°an£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êýf£¨x£©=x2+bx+1µÄ×îСֵÊÇ0£¬ÔòʵÊýb=¡À2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¡°¡÷ABCΪµÈÑüÈý½ÇÐΡ±ÊÇ¡°¡÷ABCΪµÈ±ßÈý½ÇÐΡ±µÄ±ØÒª²»³ä·ÖÌõ¼þ£®£¨Ìî¡°³äÒª¡±£¬¡°³ä·Ö²»±ØÒª¡±£¬¡°±ØÒª²»³ä·Ö¡±£¬¡°²»³ä·Ö²»±ØÒª¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸