精英家教网 > 高中数学 > 题目详情
11.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,1).
(1)求f(x)的解析式;
(2)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求实数t的取值范围.

分析 (1)根据一元二次不等式与对应方程的关系,利用根与系数的关系求出b、c的值即可;
(2)不等式f(x)+t≤2恒成立,转化为t≤-2x2+2x+2恒成立,求出g(x)=-2x2+2x+2在x∈[-1,1]的最小值即可.

解答 解:(1)∵f(x)=2x2+bx+c,且不等式f(x)<0的解集是(0,1),
∴方程2x2+bx+c=0的两个实数根为0和1,
∴$\left\{\begin{array}{l}{0+1=-\frac{b}{2}}\\{0×1=\frac{c}{2}}\end{array}\right.$,
解得b=-2,c=0,
∴f(x)=2x2-2x;
(2)对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,
即2x2-2x+t≤2恒成立,
∴t≤-2x2+2x+2;
设g(x)=-2x2+2x+2,x∈[-1,1],
∴g(x)=-2${(x-\frac{1}{2})}^{2}$+$\frac{5}{2}$,
当x=-1时,g(x)取得最小值为-2×(-1)2+2×(-1)+2=-2,
∴实数t的取值范围是t≤-2.

点评 本题考查了一元二次不等式与对应方程的关系,也考查了不等式恒成立的问题,考查了转化思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.B.C.12πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个几何体的三视图如图所示,则该几何体的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}-x+1,x≥1\\ 2x+a,x<1\end{array}$,若存在a≠0且f(1-a)=f(1+a),则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=3x-y的最大值为(  )
A.-6B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=sin(2ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-$\frac{π}{6}$,0)对称,则函数的解析式为(  )
A.y=sin(4x+$\frac{π}{3}$)B.y=sin(2x+$\frac{2π}{3}$)C.y=sin(2x+$\frac{π}{3}$)D.y=sin(4x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\vec a$=(sinx,cosx),$\vec b$=(sinx,sinx),函数f(x)=$\vec a•\vec b$.
( I)求f(x)的对称轴方程;
( II)求使f(x)≥1成立的x的取值集合;
( III) 若对任意实数$x∈[{\frac{π}{6},\frac{π}{3}}]$,不等式f(x)-m<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有(  )个.
A.192B.228C.300D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,则z=$\sqrt{3}$x+y的最大值为2$\sqrt{3}$+1.

查看答案和解析>>

同步练习册答案