精英家教网 > 高中数学 > 题目详情
2.一个几何体的三视图如图所示,则该几何体的体积为$\frac{4π}{3}$.

分析 由三视图可知:该几何体由上下两部分组成的,下面是一个圆柱,上面是一个圆锥的一半.

解答 解:由三视图可知:该几何体由上下两部分组成的,下面是一个圆柱,上面是一个圆锥的一半.
∴该几何体的体积V=π×12×1+$\frac{1}{3}×$π×12×2×$\frac{1}{2}$
=$\frac{4π}{3}$.
故答案为:$\frac{4π}{3}$.

点评 本题考查了三视图的有关知识、圆柱与圆锥的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E为AB中点,将△ADE沿直线DE折起到△A1DE,使得A1在平面EBCD上的射影H在直线CD上.
(Ⅰ)求证:平面A1EC⊥平面A1DC;
(Ⅱ)求平面DEA1与平面A1BC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{{\begin{array}{l}{x-\frac{1}{x}+1,x≥1}\\{{x^2},x<1}\end{array}}$,则f(f(-1))=1;函数f(x)在区间[-2,2]上的值域是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2ex
(1)若函数h(x)=$\frac{f(x)}{{x}^{3}}$-m在(0,+∞)上存在零点,求m的最小值.
(2)若f(x)<ax与f(x)<a2对x∈(-∞,0)恰有一个恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{9π}{2}$B.$\frac{27π}{8}$C.36πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若方程x2+mx+n=0(m,n∈R)的解集为{-2,-1},则m=3,n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>1}\\{-x-2,x≤1}\end{array}\right.$
(1)比较f(1)与f(2)的大小关系;
(2)求不等式f(x)>$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,1).
(1)求f(x)的解析式;
(2)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{2^x}-2,x≤1\\{log_2}(x-1),x>1\end{array}$,则f[f(${\frac{5}{2}})}$]=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案