精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是奇函数,当x>0时,f(x)=lgx,则f(f(
1
100
))
的值等于(  )
A、
1
lg2
B、-
1
lg2
C、lg2
D、-lg2
分析:根据题意先求出f(
1
100
)
=-2,再根据奇函数的性质知f(f(
1
100
))
=-f(2),代入解析式进行求解.
解答:解:∵当x>0时,f(x)=lgx,∴f(
1
100
)
=lg
1
100
=-2,则f(f(
1
100
))
=f(-2),
∵函数y=f(x)是奇函数,∴f(f(
1
100
))
=-f(2)=-lg2,
故选D.
点评:本题考查了利用函数奇偶性求函数的值,对于多层函数值问题,需要从内到外的顺序进行逐层求解,结合奇函数的关系式进行求解,考查了分析和解决问题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案