精英家教网 > 高中数学 > 题目详情
20.已知复数z1=1-2i,z2=2+3i,则$\frac{z_1}{z_2}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:$\frac{z_1}{z_2}$=$\frac{1-2i}{2+3i}$=$\frac{(1-2i)(2-3i)}{(2+3i)(2-3i)}$=$\frac{-4-7i}{13}$在复平面内对应的点$(-\frac{4}{13},-\frac{7}{13})$在第三象限.
故选:C.

点评 本题考查了复数运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某市抽样调查了100位居民的某年的月均用水量(单位:吨)数据如表:

(1)某市若规定人均月用水量的标准是3吨,并希望85%以上的居民的用水量不超过此标准,请估计是否能达预期希望?
(2)请估计该样本数据的中位数.
(3)拟抽查上表中月均用水量在[3.5,4.5]的6位居民中的2位进行调查,求恰好抽到一位在[3.5,4),另一位在[4,4.5]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数y=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R
(1)求y的最大值及取得最大值时相应的x的集合;
(2)怎样由y=sinx(x∈R)图象的平移和伸缩变换来得到该函数的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量ξ的概率分布如表所示:
ξ012
pa$\frac{1}{3}$$\frac{1}{6}$
f(x)=P(ξ≤x),则当x的范围是[1,2)时,f(x)等于(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过定点P(-1,0)的直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$ (其中t为参数)与圆x2+y2-2x-4y+4=0交于M,N两点,则MN的中点坐标为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,且$\overrightarrow{a}$丄($\overrightarrow{a}$+$\overrightarrow{b}$)则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.3B.-3C.$-\frac{{3\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}前n项和为Sn,若S3=3,S6=-21,则S9=171.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{bn}前n项和Sn,且b1=1,${b_{n+1}}=\frac{1}{3}{S_n}$.
(1)求b2,b3,b4的值;
(2)求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有一道数学难题,在半小时内甲能解决的概率是$\frac{1}{2}$,乙能解决的概率为$\frac{1}{3}$,两人试图独立地在半小时解决,则难题半小时内被解决的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案