精英家教网 > 高中数学 > 题目详情
10.有一道数学难题,在半小时内甲能解决的概率是$\frac{1}{2}$,乙能解决的概率为$\frac{1}{3}$,两人试图独立地在半小时解决,则难题半小时内被解决的概率为$\frac{2}{3}$.

分析 利用对立事件概率计算公式能求出难题半小时内被解决的概率.

解答 解:∵有一道数学难题,在半小时内甲能解决的概率是$\frac{1}{2}$,乙能解决的概率为$\frac{1}{3}$,
两人试图独立地在半小时解决,
难题半小时内被解决的概率:
p=1-[(1-$\frac{1}{2}$)(1-$\frac{1}{3}$)]=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知复数z1=1-2i,z2=2+3i,则$\frac{z_1}{z_2}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{y≥0}\\{x-y+a≥0}\\{2x+y-4≤0}\end{array}\right.$(a为常数)表示的平面区域的面积为3,则z=x+y的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥BC,∠BCA=45°,PA=AD=2,AC=1,DC=$\sqrt{5}$.
(1)证明PC⊥AD;
(2)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U=R,A={x|x2+2x≤0},B={x|x>-1},则集合∁U(A∩B)=(  )
A.(-∞,-1]∪(0,+∞)B.(-∞,-1)∪[0,+∞)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:sinx+siny+sinz=cosx+cosy+cosz=0,求S=tan(x+y+z)+tanxtanytanz的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的方程为$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.经过两条直线l1:2x-3y+10=0与l2:3x+4y-2=0的交点,且垂直于直线3x-2y+5=0的直线方程为(  )
A.3x+2y+2=0B.3x-2y+10=0C.2x+3y-2=0D.2x-3y+10=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知平面向量$\overrightarrow{p}$=(mlnx+ln2e2,x),$\overrightarrow{q}$=(1,$\frac{x}{2}$-m-1),函数f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$(其中e=2.71828…是自然对数的底数).
(1)当m=-1时,求函数f(x)在点P(2,f(2))处的切线方程;
(2)讨论函数f(x)的极值情况.

查看答案和解析>>

同步练习册答案