精英家教网 > 高中数学 > 题目详情
(2012•许昌二模)已知函数f(x)=
x
x+2
(x>0)
.如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理可得函数fn(x)的解析式是fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n
分析:分别计算出f1(x),f2(x),f3(x),…,分析不等式的构成,寻找规律,进行归纳.
解答:解:∵函数f(x)=
x
x+2
(x>0)

f1(x)=f(x)=
x
x+2

f2(x)=f(f1(x))=
x
3x+4

f3(x)=f(f2(x))=
x
7x+8

f4(x)=f(f3(x))=
x
15x+16


所给的函数式的分子不变都是x,
而分母是由两部分的和组成,
第一部分的系数分别是1,3,7,15…2n-1,
第二部分的数分别是2,4,8,16…2n
∴fn(x)=f(fn-1(x))=
x
(2n-1)x+2n

故答案为:
x
(2n-1)x+2n
点评:本题考查归纳推理,实际上可看作给出一个数列的前几项写出数列的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌二模)在直角坐标系xOy中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的圆心到直线l的距离;
(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设F为抛物线C:y2=2px(p>0)的焦点,过F且与抛物线C对称轴垂直的直线被抛物线C截得线段长为4.
(1)求抛物线C方程.
(2)设A、B为抛物线C上异于原点的两点且满足FA⊥FB,延长AF、BF分别抛物线C于点C、D.求:四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)若椭圆
x2
m
+
y2
8
=1
的焦距是2,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案