精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ex+a
ex+b
是定义域上的奇函数,则a+b的值为
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据奇函数的定义,f(-x)=-f(x),即可解得.
解答: 解:由奇函数的性质可知:f(-x)=-f(x),
e-x+a
e-x+b
=-
ex+a
ex+b

a
b
=-1
1
a
=a
1
b
=b

解得:
a=1
b=-1
a=-1
b=1

∴a+b=0
故答案为0.
点评:本题主要考查函数的奇偶性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示的几何体中,四边形ABCD为菱形,AMND是矩形,平面AMND⊥平面ABCD,∠DAB=60°,AD=2,AM=1.
(Ⅰ)已知在AB边上存在点E,使AN∥平面MEC,请说出点E的位置并加以证明;
(Ⅱ)在(Ⅰ)的条件下,求二面角B-CM-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
π
3
x+
π
6
),则f(x)的最小正周期和初相φ分别为 (  )
A、T=6π,φ=
π
6
B、T=6π,φ=
π
3
C、T=6,φ=
π
6
D、T=6,φ=
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论成立的是(  )
A、若ac>bc,则a>b
B、若a>b,则a2>b2
C、若a>b,c<d,则a+c>b+d
D、若a>b,c>d,则a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C所对的边,a=2,b=
7
,∠B=60°,则边长c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:直线m,n相交,命题q:直线m,n异面,则?p是q成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0},若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z满足(z+i)i=i-1(i是虚数单位),则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知原点O到直线AB的距离为
6
3
b
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

同步练习册答案