【题目】已知双曲线
(a>b>0)的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为 ( )
A.
B.
C. 2 D. ![]()
【答案】D
【解析】
连接
,利用题设条件和双曲线的定义分别求得求得
,再在
和
中,利用余弦定理求得
和
,又由
,即可化简得到答案.
连接F1Q,设F1(-c,0),F2(c,0),则|PF1|=|F1F2|=2c.
由双曲线的定义可得|PF2|=|PF1|-2a=2c-2a,
∴由3|PF2|=2|QF2|,可得|QF2|=3c-3a,
∴由双曲线的定义可得|QF1|=|QF2|+2a=3c-a.
在△PF1F2和△QF1F2中,cos∠F1F2P=
=
=
,
cos∠F1F2Q=
=
=
.
由∠F1F2Q+∠F1F2P=π,可得cos∠F1F2Q+cos∠F1F2P=0,
即有
+
=0,化简得5c=7a,所以e==.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量
=(cosA,cosB),
=(a,2c﹣b),
∥
.
(1)求角A的大小;
(2)若a=2
,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:
=1(a>1)的左、右顶点分别为A、B,P是椭圆C上任一点,且点P位于第一象限.直线PA交y轴于点Q,直线PB交y轴于点R.当点Q坐标为(0,1)时,点R坐标为(0,2) ![]()
(1)求椭圆C的标准方程;
(2)求证:
为定值;
(3)求证:过点R且与直线QB垂直的直线经过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
=80,
=20,
=184,
=720.
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是直角梯形,∠BAD=∠ADC=90°,E为CB的中点,AB=PA=AD=2CD,则AP与平面PDE所成角的正弦值为 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C1:(x﹣1)2+y2=2,圆C2:(x﹣m)2+(y+m)2=m2 . 圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M,N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,线段MN的中点A的横坐标为
.
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B,求点B的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个特定时段内,以点
为中心的
海里以内海域被设为警戒水域.点
正北50海里处有一个雷达观测站
.某时刻测得一艘匀速直线行驶的船只位于点
北偏东
且与点
相距
海里的位置
,经过
分钟又测得该船已行驶到点
北偏东
且与点
相距
海里的位置
.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com