精英家教网 > 高中数学 > 题目详情
19.一组数据8,12,10,11,9的均值为10.

分析 利用平均数定义直接求解.

解答 解:一组数据8,12,10,11,9的均值为:
$\overline{x}$=$\frac{1}{5}$(8+12+10+11+9)=10.
故答案为:10.

点评 本题考查平均值的求法,是基础题,解题时要认真审题,注意平均数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x+α的最大值与最小值之和为-2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求使得函数f(x)≥0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,$a=2\sqrt{3}$,b=3,$cosA=-\frac{1}{3}$.
(Ⅰ)求sinB;
(Ⅱ)设BC的中点为D,求中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥P-ABC的底面是边长为3的正三角形,PA⊥底面ABC,且PA=6,则该三棱锥的外接球的体积是(  )
A.48πB.32$\sqrt{3}$πC.18$\sqrt{3}$πD.8$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.
(1)求抛物线C的方程以及|AF|的值;
(2)记抛物线C的准线与x轴交于点B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一根绳子长为5米,若将其剪为两段,则其中一段大于3米的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.现将6人A,B,C,D,E,F随机排成一排,则事件“A与B相邻,且A与C不相邻”的概率为$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈R,使sinx≥1,则¬p为(  )
A.?x∈R,使sinx≠1B.?x∈R,使sinx<1C.?x∈R,使sinx<1D.?x∉R,使sinx≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x5,y5).根据收集到的数据可知$\overrightarrow{x}$=20,由最小二乘法求得回归直线方程为$\stackrel{∧}{y}$=0.6x+48,则$\sum_{i=1}^5{y_i}$=(  )
A.60B.120C.150D.300

查看答案和解析>>

同步练习册答案