精英家教网 > 高中数学 > 题目详情
已知函数
(I)求在区间上的最大值
(II)是否存在实数使得的图象与的图象有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。
:(I)
时,上单调递增,

时,
时,上单调递减,

综上,
(II)函数的图象与的图象有且只有三个不同的交点,即函数
的图象与轴的正半轴有且只有三个不同的交点[.]

时,是增函数;
时,是减函数;
时,是增函数;
时,

充分接近0时,充分大时,
要使的图象与轴正半轴有三个不同的交点,必须且只须
  即
所以存在实数,使得函数的图象有且只有三个不同的交点,的取值范围为
本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) 
(1)证明: 当mM时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则mM。 
(2)当mM时,求函数f(x)的最小值。
(3)求证: 对每个mM,函数f(x)的最小值都不小于1。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)="3" 700x+45x2-10x3(单位:万元),成本函数为C(x)="460x+5" 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在半径为R的圆内,作内接等腰三角形,当底边上高为_______时它的面积最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设某物体一天中的温度T是时间t的函数,已知,其中温度的单位是℃,时间的单位是小时.中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(如早上8:00相应的t=-4,下午16:00相应的t=4).若测得该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃,且已知该物体的温度早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00到下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断函数
处是否可导.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(+cos2x)对任意x∈R都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数.
(1);   (2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在R上的偶函数,对任意的,都有成立,若,则          

查看答案和解析>>

同步练习册答案