精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,原点为O,抛物线C的方程为x2=4y,线段AB是抛物线C的一条动弦.
(1)求抛物线C的准线方程和焦点坐标F;
(2)求
OA
OB
=-4,求证:直线AB恒过定点;
(3)当|AB|=8时,设圆D:x2+(y-1)2=r2(r>0),若存在且仅存在两条动弦AB,满足直线AB与圆D相切,求半径r的取值范围?
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用抛物线C的方程为x2=4y,可求抛物线C的准线方程和焦点坐标F;
(2)设直线AB方程为y=kx+b,代入抛物线方程,利用
OA
OB
=-4,求出b,即可证明直线AB恒过定点;
(3)当|AB|=8时,确定r,k的关系,利用函数的单调性,即可得出结论.
解答: (1)解:抛物线C的方程为x2=4y中2p=4,
p
2
=1,
∴准线方程:y=-1,焦点坐标:F(0,1)(4分)
(2)证明:设直线AB方程为y=kx+b,A(x1,y1),B(x2,y2
y=kx+b
x2=4y
得 x2-4kx-4b=0,
∴x1+x2=4k,x1x2=-4b(6分)
OA
OB
=x1x2+y1y2=x1x2+
x12x22
16
=-4

∴x1x2=-8,
∴-4b=-8,
∴b=2,
∴直线 y=kx+2过定点(0,2)(9分)
(3)解:|AB|=
1+k2
16k2+16b
=8
1+k2
k2+b
=2
(11分)
d=
|b-1|
1+k2
=r
(12分)    
r=
|
4
k2+1
-k2-1|
k2+1

t=
k2+1
≥1
,则r=|
4
t3
-t|
,当1≤t<
2
时,r=
4
t3
-t
单调递减,0<r≤3(13分)
t>
2
时,r=t-
4
t3
单调递增,r>0(14分)
k存在两解即t一解,∴r>3.(16分)
点评:本题考查抛物线的性质,考查直线与抛物线的位置关系,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在某次试验中,有两个试验数据x,y统计的结果如下面的表格1.
x 1 2 3 4 5
y 2 3 4 4 5
参考数据:
序号 x y x2 xy
1 1 2 1 2
2 2 3 4 6
3 3 4 9 12
4 4 4 16 16
5 5 5 25 25
表格2
(1)在给出的坐标系中画出x,y的散点图.
(2)补全表格2,然后根据表格2的内容和公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

①求出y对x的回归直线方程
y
=
b
x+
a
中回归系数
a
b

②估计当x为10时
y
的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0),设P是双曲线C上任意一点,O为坐标原点,设F为双曲线右焦点.
(1)若双曲线C满足:无论点P在右支的何处,总有|PO|>|PF|,求双曲线C在第一、三象限的那条渐近线的倾斜角的取值范围;
(2)过右焦点F的动直线l交双曲线于A、B两点,是否存在这样的a,b的值,使得△OAB为等边三角形.若存在,求出所有满足条件的a,b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an+1=2an+1,a1=1,n∈N*
(1)求证:数列{an+1}是等比数列,并求数列{an}的通项公式
(2)若bn=
log2(an+1)
2n
,且Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某基金管理公司管理着一只开放式基金,用xn表示该基金在第n年初的总资产,该基金相对于年初的总资产来说,年投资收益率为a,在第n年内,该基金持有人赎回该基金的资金与xn成正比,投资者购买该基金的资金与xn成反比,比例系数依次为正常数b、c(赎回后该基金的资产相应减少,购买后该基金的资产相应增加).该基金每年向管理公司交纳管理费,向基金持有人分红的红利和其他开支合计为正常数d.
(1)求xn+1和xn的关系式;
(2)若x1取一个恰当的值时可使该基金每年年初的总资产保持不变,试写出a、b、c、d应满足的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C1
x2
2
-y2=1,曲线C2:|y|=|x|+1,P是平面上一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”. 
(Ⅰ)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(Ⅱ)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:长方体ABCD-A1B1C1D1,AB=2,AD=4,AA1=4,O为对角线AC1的中点,过O的直线与长方体表面交于两点M,N,P为长方体表面上的动点,则
PM
PN
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|sinx|+sin|x|(x∈R)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,b=2,S△ABC=2
3
,则
a
sinA
=
 

查看答案和解析>>

同步练习册答案