精英家教网 > 高中数学 > 题目详情

【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是

A. 56 B. 60 C. 120 D. 140

【答案】D

【解析】

根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.

根据频率分布直方图,200名学生中每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,

故200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面ABCD⊥平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,AFDEAFEFAFAD2AB2DE2

1)求证:CE∥面ABF

2)求直线DE与平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数存在零点,且对任意都满足,若关于的方程)恰有三个不同的根,则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),曲线 .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.

1)求曲线的极坐标方程;

2)射线)与曲线的异于极点的交点为,与曲线的交点为,求.

【答案】(1) 的极坐标方程为 的极坐标方程为(2) .

【解析】试题分析:(1先根据三角函数平方关系消参数得曲线,再根据将曲线极坐标方程;2代人曲线的极坐标方程,再根据.

试题解析:1)曲线的参数方程为参数)

可化为普通方程

,可得曲线的极坐标方程为

曲线的极坐标方程为.

2)射线)与曲线的交点的极径为

射线)与曲线的交点的极径满足,解得

所以.

型】解答
束】
23

【题目】设函数

(1)设的解集为,求集合

(2)已知为(1)中集合中的最大整数,且(其中为正实数),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4

(Ⅰ)求函数的单调递减区间;

(Ⅱ)计算的值;

(Ⅲ)设函数,试讨论函数在区间 [03] 上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在△中, 分别为 的中点, 的中点 将△沿折起到△的位置,使得平面平面 的中点如图2

1求证: 平面

2求证:平面平面

3线段上是否存在点,使得平面?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:①若,则;②若,则存在唯一实数,使得;③若,则;④若,且的夹角为钝角,则;⑤若平面内定点满足,则为正三角形.其中正确的命题序号为 ________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在同一半周期内的图象过点 ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.

(1)求的值;

(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线)上(如图所示),试判断点是否也落在曲线)上,并说明理由.

查看答案和解析>>

同步练习册答案