【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是
A. 56 B. 60 C. 120 D. 140
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求证:CE∥面ABF;
(2)求直线DE与平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),曲线: .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.
(1)求曲线的极坐标方程;
(2)射线()与曲线的异于极点的交点为,与曲线的交点为,求.
【答案】(1) 的极坐标方程为, 的极坐标方程为;(2) .
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线,再根据将曲线的极坐标方程;(2)将代人曲线的极坐标方程,再根据求.
试题解析:(1)曲线的参数方程(为参数)
可化为普通方程,
由,可得曲线的极坐标方程为,
曲线的极坐标方程为.
(2)射线()与曲线的交点的极径为,
射线()与曲线的交点的极径满足,解得,
所以.
【题型】解答题
【结束】
23
【题目】设函数.
(1)设的解集为,求集合;
(2)已知为(1)中集合中的最大整数,且(其中,,为正实数),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)计算的值;
(Ⅲ)设函数,试讨论函数在区间 [0,3] 上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△中, , 分别为, 的中点, 为的中点, , .将△沿折起到△的位置,使得平面平面, 为的中点,如图2.
(1)求证: 平面;
(2)求证:平面平面;
(3)线段上是否存在点,使得平面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:①若,则;②若,则存在唯一实数,使得;③若,则;④若,且与的夹角为钝角,则;⑤若平面内定点满足,则为正三角形.其中正确的命题序号为 ________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com