【题目】如图,在本市某旧小区改造工程中,需要在地下铺设天燃气管道.已知小区某处三幢房屋分别位于扇形的三个顶点上,点是弧的中点,现欲在线段上找一处开挖工作坑(不与点,重合),为铺设三条地下天燃气管线,,,已知米,,记,该三条地下天燃气管线的总长度为米.
(1)将表示成的函数,并写出的范围;
(2)请确定工作坑的位置,使此处地下天燃气管线的总长度最小,并求出总长度的最小值.
科目:高中数学 来源: 题型:
【题目】已知圆具有以下性质:设A,B是圆C:上关于原点对称的两点,点P是圆上的任意一点.若直线PA,PB的斜率都存在并分别记为,,则=﹣1,是与点P的位置无关的定值.
(1)试类比圆的上述性质,写出椭圆的一个类似性质,并加以证明;
(2)如图,若椭圆M的标准方程为,点P在椭圆M上且位于第一象限,点A,B分别为椭圆长轴的两个端点,过点A,B分别作⊥PA,⊥PB,直线,交于点C,直线与椭圆M的另一交点为Q,且,求的取值范围(可直接使用(1)中证明的结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验次;
方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.
(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;
(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.
若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.
(i)若与的期望相等.试求关于的函数解析式;
(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:
(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.
附:,其中n=a+b+c+d为样本容量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,过原点且斜率为1的直线交椭圆于两点,四边形的周长与面积分别为8与 .
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线交椭圆于两点,且,求证:到直线的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱台被过点的平面截去一部分后得到如图所示的几何体,其下底面四边形是边长为2的菱形,,平面,.
(Ⅰ)求证:平面平面;
(Ⅱ)若与底面所成角的正切值为2,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆O的直径,点C是圆O上异于A,B的点,直线平面,E,F分别是,的中点.
(1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;
(2)设,求二面角大小的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com