精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足以下条件:①f(1)=2;②当x>0时,f(x)>1;③对任何x,y∈R都有f(x+y)=f(x)f(y)求证:
(1)f(0)=1;
(2)当x<0时,0<f(x)<1;
(3)函数f(x)在R上是单调增函数.
分析:(1)令x=0,y=1,利用条件可得结论;
(2)当x<0时,-x>0,则f(-x)>1,利用f(0)=1,可得结论;
(3)利用函数单调性的定义,设x1<x2,证明
f(x1)
f(x2)
<1,即可得到结论.
解答:证明:(1)令x=0,y=1,则f(1)=f(1+0)=f(1)f(0)=2f(0)=2
∴f(0)=1;
(2)当x<0时,-x>0,则f(-x)>1
∴f(0)=f[x+(-x)]=f(x)f(-x)=1
f(x)=
1
f(-x)

∴当x<0时,0<f(x)<1;
(3)设x1<x2,则x1-x2<0,
f(x1)
f(x2)
=
f[(x1-x2)+x2]
f(x2)
=
f(x1-x2)f(x2)
f(x2)
=f(x1-x2)<1
由(1)知,f(x)>0,∴f(x1)<f(x2
∴函数f(x)在R上是单调增函数.
点评:本题考查抽象函数,考查赋值法的运用,考查函数单调性的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案