已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.
(1);(2)
解析试题分析:(1)要求参数的取值范围,需要研究函数的单调性问题,∵,则,当时,;当时,.∴在上单调递增;在上单调递减,∴在处取得极大值.而函数在区间上存在极值,则函数在区间(其中)上存在极值,∴,解得;(2)对于恒成立问题,最常用的方法是分离参数,,构造函数,只需求出的最小值,应该求导研究,令,则,当,
∴在上单调递增,∴,从而,故在上单调递增,∴,所以.
试题解析:(1)∵,则
当时,;当时,.
∴在上单调递增;在上单调递减,
∴在处取得极大值.
∵函数在区间(其中)上存在极值,
∴,解得.
不等式,即为,令,
则,令,则,当,
∴在上单调递增,∴,从而,
故在上单调递增,∴,所以.
考点:1.利用导数求函数的单调性问题;2.函数中恒成立求参数范围.
科目:高中数学 来源: 题型:解答题
设函数.
(1)当时,求曲线在处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是二次函数,不等式的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然数m,使得方程=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(其中常数).
(1)当时,求的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点、,使得曲线
在点、处的切线互相平行,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com