【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”,“演讲社”三个金牌社团中抽取6人组成社团管理小组,有关数据见表(单位:人):
社团名称 | 成员人数 | 抽取人数 |
话剧社 | 50 | a |
创客社 | 150 | b |
演讲社 | 100 | c |
(1)求a,b,c的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.
【答案】
(1)解:由分层抽样的性质,得:
,
,
所以从“话剧社”,“创客社”,“演讲社”三个社团中抽取的人数分别是1,3,2.
(2)解:设从“话剧社”,“创客社”,“演讲社”抽取的6人分别为:A,B1,B2,B3,C1,C2
则从6人中抽取2人构成的基本事件为:
{A,B1},{A,B1},{A,B1},{A,B1},{A,C2},{B1,B2},{B1,B3},{B1,C1},
{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个…
记事件D为“抽取的2人来自不同社团”.则事件D包含的基本事件有:
{A,B1},{A,B1},{A,B1},{A,B1},{A,C2},{B1,C1},{B1,C2},
{B2,C1},{B2,C2},{B3,C1},{B3,C2}共11个,
∴这2人来自不同社团的概率 .
【解析】(I)由分层抽样的性质,能求出从“话剧社”,“创客社”,“演讲社”三个社团中抽取的人数.(Ⅱ)设从“话剧社”,“创客社”,“演讲社”抽取的6人分别为:A,B1 , B2 , B3 , C1 , C2 , 利用列举法能求出从6人中抽取2人,这2人来自不同社团的概率.
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18﹣ ,B产品的利润y2与投资金额x的函数关系为y2= (注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为: (t为参数),两曲线相交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若P(﹣2,﹣4),求|PM|+|PN|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化简f(x);
(2)常数ω>0,若函数y=f(ωx)在区间 上是增函数,求ω的取值范围;
(3)若函数g(x)= 在 的最大值为2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)当x∈[0, ]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3﹣2m+mcos(2x﹣ )(m>0),若对于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ADEF与梯形ABCD所在的闰面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(1)求证:BM∥平面ADEF;
(2)求平面BEC与平面ADEF所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)设函数h(x)=g(x)﹣f(x),求函数h(x)在区间[2,4]上的值域;
(2)定义min(p,q)表示p,q中较小者,设函数H(x)=min{f(x),g(x)}(x>0), ①求函数H(x)的单调区间及最值;
②若关于x的方程H(x)=k有两个不同的实根,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com