精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)设函数h(x)=g(x)﹣f(x),求函数h(x)在区间[2,4]上的值域;
(2)定义min(p,q)表示p,q中较小者,设函数H(x)=min{f(x),g(x)}(x>0), ①求函数H(x)的单调区间及最值;
②若关于x的方程H(x)=k有两个不同的实根,求实数k的取值范围.

【答案】
(1)解:∵函数f(x)在区间(0,+∞)上单调递减,

函数g(x)在区间(0,+∞)上单调递增,

∴函数h(x)在区间[2,4]上单调递增,

故h(2)≤h(x)≤h(4),即0≤h(x)≤13,

所以函数在区间[2,4]上的值域为[0,13]


(2)解:①在同一坐标系中,作出f(x),g(x)的图象如图所示,

根据题意得,H(x)=

由(1)知,y=2x在区间(0,2]上单调递增,

在区间上单调递减,

故H(x)max=H(2)=4.

∴函数H(x)的单调递增区间为(0,2],单调递减区间为(2,+∞),

H(x)有最大值4,无最小值.

②∵ 在[2,+∞)上单调递减,∴

又g(x)=2x在(0,2]上单调递增,∴1<2x≤4,

∴要使方程H(x)=k有两个不同的实根,

则需满足2<k<4,

即实数k的取值范围是(2,4)


【解析】(1)根据函数f(x),g(x)的单调性,求出h(x)的单调性,求出函数h(x)的值域即可;(2)①根据函数f(x),g(x)的图象求出H(x)的最大值,②根据H(x)的范围,求出k的范围即可.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”,“演讲社”三个金牌社团中抽取6人组成社团管理小组,有关数据见表(单位:人):

社团名称

成员人数

抽取人数

话剧社

50

a

创客社

150

b

演讲社

100

c


(1)求a,b,c的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且为锐角.

(1)求角的大小;

(2)求函数 ()的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.

(1)随机选取1件产品,求能够通过检测的概率;

(2)随机选取3件产品,其中一等品的件数记为,求的分布列及数学期望..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A则实数b的取值范围是(
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若满足f(1)=
(1)求实数a的值;
(2)证明:f(x)为奇函数.
(3)判断并证明函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是椭圆的一个顶点, 的长轴是圆的直径. 是过点且互相垂直的两条直线,其中交圆于两点交椭圆于另一点.

(1)求椭圆的方程;

2)求面积取最大值时直线的方程.

查看答案和解析>>

同步练习册答案