精英家教网 > 高中数学 > 题目详情
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(I)求证:平面PAC⊥平面PBC;
(II)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

【答案】分析:(Ⅰ)要证平面PAC⊥平面PBC,只要证明平面PBC经过平面PAC的一条垂线BC即可,利用题目给出的条件借助于线面垂直的判定定理能够证明BC⊥平面PAC;
(Ⅱ)因为平面PAB和平面ABC垂直,只要在平面ABC内过C作两面的郊县AB的垂线,然后过垂足再作PB的垂线,连结C和后一个垂足即可得到二面角C-PB-A的平面角,然后在作出的直角三角形中通过解直角三角形即可求得二面角C-PB-A的余弦值.
解答:(Ⅰ)证明:如图,

由AB是圆的直径,得AC⊥BC.
由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面ABC,AC?平面PAC,
所以BC⊥平面PAC.
因为BC?平面PBC,
所以平面PAC⊥平面PBC;
(Ⅱ)解:过C作CM⊥AB于M,
因为PA⊥平面ABC,CM?平面ABC,所以PA⊥CM,
故CM⊥平面PAB.
过M作MN⊥PB于N,链接NC.
由三垂线定理得CN⊥PB.
所以∠CNM为二面角C-PB-A的平面角.
在Rt△ABC中,由AB=2,AC=1,得
在Rt△ABP中,由AB=2,AP=1,得
因为Rt△BNM∽Rt△BAP,所以
故MN=
又在Rt△CNM中,.故cos
所以二面角C-PB-A的余弦值为
点评:本题考查了平面与平面垂直的判定,考查了二面角的平面角及其求法,“寻找垂面,构造垂线”是找二面角的平面角常用的方法,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年吉林长春十一中高二上学期期初考试理科数学试卷(解析版) 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.

(1)求证:平面PAC⊥平面PBC;(6分)

(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.

(1)求证:平面PAC⊥平面PBC;(6分)

(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

查看答案和解析>>

同步练习册答案